William Herring, M.D. © 2003

Diseases of the Great Vessels

In Slide Show mode, to advance slides, press spacebar

All illustrations retain their original copyrights

Aortic Anomalies General

- Most are asymptomatic
 - Unless they cause encircling vascular ring like pulmonary sling
- Can be complex lesions requiring multiple projections
 - MRI or CT

© Frank Netter, MD Novartis®

Aberrant Subclavian Arteries General

- Left arch with aberrant right subclavian
 - Usually passes posterior to esophagus
 - Dilated origin is "Diverticulum of Kommerell"
- Right arch with aberrant left subclavian
 - Most are asymptomatic
 - Passes behind esophagus
 - Low incidence of congenital heart dz

Left Aortic Arch With Anomalous RSCA

Left Arch with Anomalous RSCA

- Occurs in less than 1% of people
- Passes posterior to esophagus
 - Pushes trachea and esophagus forward
- Produces oblique shadow above aortic arch on frontal film
- Origin of RSCA may be dilated
 - Diverticulum of Kommerell

© Frank Netter, MD Novartis®

© Dahnert Lippincott Williams & Wilkins

Left Aortic Arch with Aberrant R SCA

Left Aortic Arch with Aberrant Right SCA

© L. Elliott, MD J.B. Lippincott ®

Left Aortic Arch with Aberrant R SCA

Right Aortic Arches

Right Aortic Arch Types

- At least five different types
- Only two of importance

Right Aortic Arch Types

- Mirror Image Type Type I
- Aberrant left subclavian Type II

Aberrant LSCA

Right Aortic Arches General

- Recognized by leftward displacement
 - Of barium-filled esophagus
 - Of air-filled trachea
- Aortic knob is absent from left side
- Aorta descends on right
- Para-aortic stripe returns to left side of spine just above diaphragm

Right Aortic Arches General

- Mirror-image type almost always has associated CHD
 - Usually Tetralogy of Fallot
- Aberrant Left Subclavian type rarely has associated CHD
 - Most common variety of right arch

Right Aortic Arch Type 1—Mirror Image Type

- 2° interruption of left arch just distal to ductus arteriosis
- Associated with congenital heart disease 98% of time

Right Aortic Arch Type 1—Mirror Image Type—X-ray Findings

- No posterior impression on trachea or barium-filled esophagus
- Heart is usually abnormal in size or shape
- Aorta descends on right

Mirror Image Right Aortic Arch with TOF

Mirror Image Right Aortic Arch

Right Aortic Arch Type II—Aberrant Left Subclavian

- 2° interruption of left aortic arch between LCC and LSC arteries
- Associated with cardiac defects 5-10% of the time
 - Tetralogy of Fallot most often (71%)
 - ASD or VSD next most often (21%)
 - Coarctation of aorta rarely (7%)

Right Aortic Arch Type II—Aberrant Left Subclavian

- Anomalous left subclavian artery (retroesophageal and retrotracheal)
- Aorta descends on right

© Dahnert Lippincott Williams & Wilkins

Right Arch with Aberrant LSCA

Right Aortic Arch Aberrant Left Subclavian—X-ray Findings

 Posterior impression on trachea and barium-filled esophagus

Heart is usually normal in size and shape

Aorta descends on right

© Stephen Miller, MD Mosby The Requisites

Right Aortic Arch with Aberrant Left Subclavian

Right Aortic Arch with Aberrant Left Subclavian

Right Aortic Arch with Aberrant Left Subclavian

If the patient has Then it will be a Mirror Right arch,

associated

- 90% with Tetralogy of Fallot
- 6% with Truncus Arteriosis
- 5% with Tricuspid Atresia

this disease,

If the patient has This % will have a Mirror Right arch

•	Truncus	arteriosis	33%
		ditolio	

 Tetralogy of Fallot 25%

10% Transposition

 Tricuspid atresia 5%

VSD 2%

> **Apparent discrepancy due to much** higher ↑ incidence of TOF than Truncus

Left Aortic Arch with Aberrant R SCA

Mirror Image Right Aortic Arch

tell whether they are usually associated with congenital heart disease or not

Right Aortic Arch with Aberrant Left Subclavian

Double Aortic Arch

Double Aortic Arch General

- Most common vascular ring
- Rarely associated with congenital heart disease
 - But vascular ring → tracheal and/or esophageal compression
- Caused by persistence of R and L IV branchial arches

R IV arch normally becomes most proximal segment of RSCA

L IV arch is part of normal aortic arch between LCC and **LSCA**

Persistence of both IV branchial arches forms a vascular ring or Double Aortic Arch

Double Aortic Arch General

- Passes on both sides of trachea
 - Joins posteriorly behind esophagus
- Right arch is larger and higher
- Left arch is smaller and lower
 - Ba swallow shows bilateral impressions on frontal view
 - Posterior impression on lateral view
- Angiogram is characteristic

Double Aortic Arch Clinical

- Symptoms may begin at birth
- Symptoms include
 - Tracheal compression, or
 - Difficulty swallowing

Double Aortic Arch Anatomy

- Right arch supplies
 RSCA and RCC
- Left arch supplies
 LCC and LSCA

© Stephen Miller, MD Mosby The Requisites

© Dahnert Lippincott Williams & Wilkins

Double Aortic Arch

Double Aortic Arch X-ray Findings

- Right arch is higher and larger
- Left arch is lower and smaller
 - Produces reverse S on esophagram on AP
- On lateral, arches are posterior to esophagus and anterior to trachea

Double Aortic Arch

Double Aortic Arch

© Dahnert Lippincott Williams & Wilkins

Double Aortic Arch Impressions on Trachea and Esophagus

Double Aortic Arch

Cervical Aortic Arch

Cervical Aortic Arch General

- Rare
- Usually asymptomatic
 - May present as pulsating supraclavicular mass
 - May produce vascular ring and compress airway
- Embryogenesis uncertain
- Over 80% are right-sided

Cervical Aortic Arch Imaging Findings–Right-sided lesions

- Right-sided cervical aortic arches
 - Right apical mass-like density
 - Absence of aortic knob
 - Descend on the left
 - Displace the trachea and esophagus forward
 - Branching may be normal or mirror-image

Cervical Aortic Arch Imaging Findings-Left-sided lesions

- Left-sided cervical aortic arches
 - Aortic knob at apex of lung
 - Descend on the left
 - Do not displace the trachea or esophagus forward

Cervical Aortic Arch

Cervical Aortic Arch

Aortitis

Takayasu's Aortitis Pulseless Disease

- Chronic inflammatory arteritis
- Affects aorta, its main branches and pulmonary arteries
- 15-40 years, 8:1 females, Oriental population
- LSCA, LCCA, brachiocephalic, renals, celiac commonly involved

Takayasu's Aortitis Type 3

- Most common is Type 3 (55%)
 - Stenoses of aortic arch, distal thoracic and abdominal aorta

Takayasu's Aortitis Type 2

- Next most common is Type 2 (11%)
 - Segmental
 stenoses in
 descending
 thoracic and
 abdominal aorta

Takayasu's Aortitis Type 1

- Next most common is Type 1 (8%)
 - Stenoses in arch, brachiocephalic, carotid and subclavian arteries

© Stephen Miller, MD Mosby The Requisites

Takayasu's Aortitis (Type 3)

Takayasu's Aortitis Imaging Findings

- On angiography, narrowing of aortic lumen
- On MRI, thickened aortic wall
- Associated aneurysms may be saccular or fusiform

Other Forms of Aortitis

- Inflammation of intima and media
- Healing produces scarring "tree-bark" appearance of luminal surface
- Aorta dilates
 - Ascending aorta more than arch
 - Abdominal aorta spared
 - Opposite of atherosclerosis

Other Forms of Aortitis

- Aortic wall becomes thickened on healing
- Usually results in aortic regurgitation
 - Diastolic murmur

Giant Cell Arteritis

Causes of Aortitis

- Rheumatic fever
- Reiter's syndrome
- Syphilis
 - Begins above sinotubular ridge
- Giant cell arteritis
- Ankylosing spondylitis
 - Crosses sinotubular ridge and dilates both root and ascending aorta

Sinotubular Ridge-Jct of Sinuses of Valsalva and tubular aorta

Syphilitic Aortitis

Pulmonary Sling

Pulmonary Sling Embryogenesis

- Failure of formation of left 6th aortic arch
 - → absence of left pulmonary artery

Proximal L VI arch normally becomes proximal segment of L PA; distal VI persists as ductus until birth

© Frank Netter, MD Novartis®

Pulmonary Sling General

- Aberrant origin of left pulmonary artery
 - From the right pulmonary artery
- Left pulmonary artery passes between trachea and esophagus
- Most have other anomalies
 - Stenosis of right mainstem bronchus
 - May lead to air-trapping, lobar emphysema and hyperlucent lung

© L. Elliott, MD J.B. Lippincott ®

© Dahnert Lippincott Williams & Wilkins

Pulmonary Sling

Pulmonary Sling

- Only vascular malformation to pass between esophagus and trachea
- Bronchial cyst may produce same finding on esophagus/trachea

Pulmonary Sling

Pulmonary Sling

Tracheal Impressions

Posterior Esophagus

Anterior Trachea

© Dahnert Lippincott Williams & Wilkins

Left Ao Arch with Aberrant R SCA Right Ao Arch with Aberrant L SCA

© Dahnert Lippincott Williams & Wilkins

Isolated anomalies
BCA arising too distal
CCA arising too proximal
CCA and BCA arising together

Anterior trachea and Posterior Esophagus

© Dahnert Lippincott Williams & Wilkins

Double Aortic Arch
R Ao Arch with Aberrant LSCA + L ductus
L Ao Arch with Aberrant RSCA + R ductus

Posterior trachea and Anterior Esophagus

© Dahnert Lippincott Williams & Wilkins

Pulmonary Sling

© Dahnert Lippincott Williams & Wilkins

Aberrant SCA

Double Ao Arch Isolated Anomalies

Pulmonary Sling

Venous Anomalies

Persistent Left SVC

Persistent Left SVC

- Occurs in less than 0.5% of people
 - Failure of regression of L common and Ant.
 Cardinal veins
- Drains left jugular and left subclavian v
- Most patients also have right-sided SVC
- Drains into dilated coronary sinus → R atrium

Post-op day 3

Post-op day 6

Persistent Left SVC

Diseases of the Not-So-Great Vessels

Left Superior Intercostal Vein Aortic Nipple

Left Superior Intercostal Vein The Aortic Nipple

- Visible in 5% of people
- Should not be mistaken for mass

Aortic Nipple-Left Superior Intercostal Vein

Aortic Nipple-Left Superior Intercostal Vein

Aortic Nipple-Left Superior Intercostal Vein