© 2004 William Herring, MD

Cardiac Board-type Case Review

LR

What's the DDX?

Cyanotic newborn

Cyanosis With Decreased Vascularity

- Tetralogy
- Truncus-type IV
- Tricuspid atresia*
- Transposition*
- Ebstein's

* Also appears on DDx of cyanosis with increased vascularity

Ebstein's Anomaly

What's the DDX?

8 year-old cyanotic male

Cyanosis With Increased Vascularity

- Truncus types I, II, III
- TAPVR
- Tricuspid atresia*
- Transposition*
- Single ventricle

* Also appears on DDx of cyanosis with decreased vascularity

TAPVR-Supracardiac type 1

What's the DDX?

Acyanotic newborn

Cardiomegaly with Normal Vasculature

- Viral myocarditis
- Endocardial fibroelastosis
- Aberrant left coronary artery
- Cystic medial necrosis
- Diabetic mother

Viral myocarditis

What's the DDX?

Acyanotic newborn

Causes of CHF In Newborn

Impede Return of Flow to Left Heart

- Infantile coarctation
- Congenital aortic stenosis
- Hypoplastic left heart syndrome
- Congenital mitral stenosis
- Cor triatriatum
- Obstruction to venous return from lungs
 - TAPVR from below diaphragm

Hypoplastic Left Heart Syndrome

7 yo acyanotic female

Atrial septal defect

Another example

34 yo acyanotic female

ASD (primum) with PAH

34 yo acyanotic female

Ostium Secundum ASD-MRI

- Discontinuity in the atrial septum with systolic signal void consistent with L to R shunt at atrial level
- Right atrium is slightly dilated; RV, LV and LA size are normal

1 yo acyanotic female

Ventricular Septal Defect

Another example-VSD

VSD

Membranous VSD-MRI

8 mos old acyanotic female

Patent Ductus Arteriosus

Patent Ductus Arteriosus-MRI

 Jet of signal loss showing continuous flow from the aorta to the MPA consistent with sizeable PDA; MPA is severely dilated at level of PDA

Signal

SCVMR

9 mos old cyanotic female

TAPVR-supracardiac type

TAPVR Supracardiac Type 1

© Frank Netter, MD Novartis®

Angiographic Appearance

© Frank Netter, MD Novartis®

TAPVR-cardiac type-MRI

© Frank Netter, MD Novartis®

TAPVR-infracardiac type-MRI

10 yo cyanotic male

Tetralogy of Fallot

Other examples

Tetralogy of Fallot

Tetralogy of Fallot-MRI Overriding aorta, VSD

Axial spin-echo MR image shows severe infundibular pulmonic stenosis (arrow).

Korean Journal of Radiology

What's the diagnosis?

Radiology Resource and Review

12 yo cyanotic male

Truncus arteriosus-Type 1

Radiology Resource and Review

Truncus Type 1

Radiology Resource and Review

Elliott, L © Cardiac Imaging

Single large artery (T) arising from the heart.
Pulmonary artery (arrow) originates from the left side of the truncus
There is a right aortic arch

Truncus Type II

Truncus Type III

interventricular

ECG-gated spinecho transaxial image demonstrates a bar of muscle and fat (blue arrow) (tricuspid atresia) separating the right atrium (yellow arrow) from the hypoplastic right ventricle (red arrow)

Tricuspid atresia-MRI

Tricuspid atresia-MRI

What's the diagnosis?

3 mos old cyanotic male

Transposition of the Great Vessels

In Transposition, pulmonic valve is

Posterior
Medial
Inferior

To the aortic valve

Elliott, L © Cardiac Imaging

Normal

Corrected Transposition

Anatomic Ventricles

Trabeculated ventricle-Anatomic Right

Elliott, L © Cardiac Imaging

Smooth ventricle-Anatomic Left

Elliott, L © Cardiac Imaging

Transposition of the Great Vessels - RVgram

Elliott, L © Cardiac Imaging

Transposition of the Great Vessels - LVgram

Oblique axial spin-echo image shows displaced attachment (thick arrow) of the posterior leaflet (thin arrows)

Korean Journal

What's the diagnosis?

Acyanotic adult

Coarctation of the aorta

Coarctation of the aorta

Arrow points to indentation representing area of coarctation with dilated aorta (or LSCA) above and post-stenotic dilatation below coarct

Ascending Ao may be dilated, normal or small

Convexity
above aortic
knob due to
dilated LSCA
or Aorta
proximal to
coarct

Yellow arrows point to rib-notching

Coarctation of the Aorta

Contrast enhanced MRA shows long segment coarctation of the aorta

Oblique sagittal spin-echo-Coarctation of the Aorta

Axial spin-echo MRI-Coarctation of the Aorta

What's the diagnosis?

Acyanotic adult

Aortic Stenosis

Prominence of ascending aorta from post-stenotic dilatation

Aortic Stenosis

Coronal cine MRI image demonstrates a systolic signal void originating at the stenotic aortic valve. Ascending aorta is dilated

Hypoplastic Left Heart Syndrome

Hypoplastic Left Heart Syndrome

Hypoplastic Left heart Syndrome

Gated spin echo at base of heart shows hypoplastic aorta (arrow) posterior and right of main pulmonary artery

Cor triatriatum

Radiology Resource and Review

Frontal radiograph demonstrates CHF

Cor Triatriatum - angiography

Cor Triatriatum - angiography

© Frank Netter, MD Novartis®

Cor Triatriatum

Aortic Regurgitation
Cine MR image during diastole shows signal void emanating from the aortic valve

What's the diagnosis?

Acyanotic adult

Mitral Stenosis

Convexity from enlarged left atrial appendage

Convexity from enlarged left atrial appendage

Mitral Stenosis

Mitral Stenosis

Cine MR image in axial plane demonstrates a diastolic signal void emanating from the mitral valve

Left Atrial Myxoma
Contrast-enhanced CT shows large filling
defect in lumen of LA

Left Atrial Myxoma

Cine MRI shows soft tissue mass arising from wall of left atrium and projecting into lumen

Acyanotic adult

Mitral regurgitation

Mitral Regurgitation

Cine MR image in axial plane during systole depicts a signal void emanating from the mitral valve

Difference in heart size – MS and MR

Mitral Stenosis

Mitral Regurgitation

Acyanotic adult

Pulmonic stenosis

Prominent main pulmonary artery segment

Normalsized heart

Enlargement of left pulmonary artery

Pulmonic Stenosis

Acyanotic adult

Right Arch with Aberrant Left SCA

Trachea is bowed forward by aberrant left subclavian artery (arrow)

Right Aortic Arch with Aberrant Left Subclavian (Arrows)

36 yo cyanotic female

Mirror image Right aortic arch with TOF

Trachea is not bowed forward

Mirror Image Right Aortic Arch

ReviewName the
abnormalities.
Are they the "good"
or "bad" variety?

Left Aortic Arch with Aberrant R SCA

Mirror Image Right Aortic Arch

Right Aortic Arch with Aberrant Left Subclavian

2 month old with stridor

Double aortic arch

Right arch is larger and higher Left arch is smaller and lower

Miller-requisites

Double Aortic Arch

Miller-requisites

Double Aortic Arch-angiographic appearance

Dahnert

Double Aortic Arch Impressions on Trachea and Esophagus

4 month old with stridor

Pulmonary Sling

Dahnert

Pulmonary Sling

Tracheal/esophageal impressions

Aberrant SCA

Double Ao Arch

Isolated Anomalies (Rare)

Dahnert

Pulmonary Sling

If you see cases like these, you passed...

Myxoma in Left Atrium

Thrombus in left atrial appendage

Dilated Cardiomyopathy

End systole End diastole

Dilated Cardiomyopathy

Cine MR images in the short axis plane show little change in size between end diastole and end systole

Arrhythmogenic Right Ventricular Dysplasia

Left-thickening and replacement of RV anterior wall by fatty tissue.

Fat suppression (right) - loss of signal in RV anterior wall,

confirming fatty nature of these changes

Amersham

Restrictive cardiomyopathy

ECG-gated spin-echo image - enlargement of both atria and normal size of ventricles with thickened walls

Hypertrophic Cardiomyopathy

ECG-gated spin-echo image in coronal plane - severe symmetrical hypertrophy of LV

Asymmetric septal hypertrophy

Thickened apex

©Miller-Requisites

Hypertrophic Cardiomyopathy

Mitral Regurgitation From SAM

Almost complete emptying of LV

Marked wall thickening

Congenital Defect in the Pericardium

Cardiac Malpositions

Cardiac Malpositions Types

- Situs solitus with dextrocardia
- Situs inversus with levocardia
- Situs inversus with dextrocardia

Rule of Thumb

 If aortic arch/apex of heart are on opposite sides from stomach bubble, high incidence of CHD

Asplenia Bilateral Right-sidedness

- Male
- Cyanotic
- High risk of infection
- Severe cardiac abnormalities
 - Transposition
 - TAPVR

Polysplenia Bilateral left-sidedness

- Female
- Abnormalities are more benign
 - Azygous continuation of IVC
 - Bilateral superior vena cava
 - PAPVR
 - ASD

Asplenia/Polysplenia

- Asplenia bad boy
- Polysplenia good girl

Situs Ambiguous-polysplenia

Click here for downloadable version of this chart http://www.learningradiology.com/notes/cardiacnotes/cardiacmalpositionspdf.pdf

Good Luck

