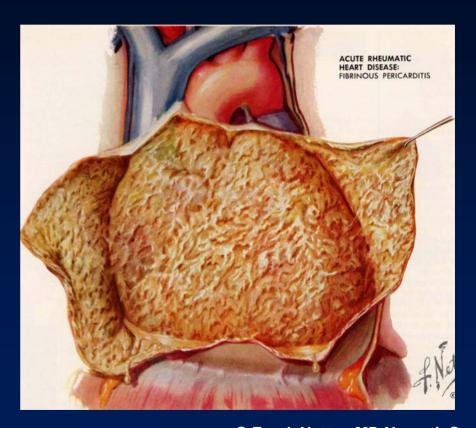
William Herring, M.D. © 2002

Valvular Lesions of the Heart

In Slide Show mode, to advance slides, press spacebar

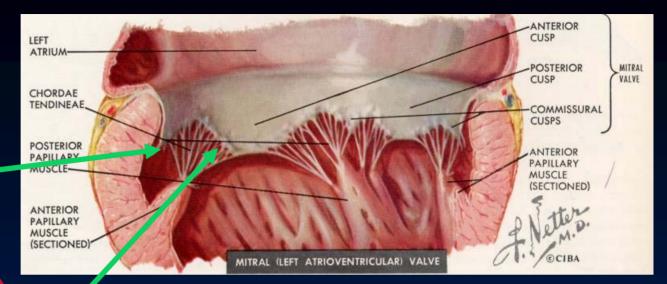

Mitral Stenosis Left Atrial Outflow Obstruction

Mitral Stenosis Rheumatic Valvular Heart Disease

 Rheumatic heart disease causes mitral stenosis in 99.8% of cases

Acute Rheumatic Valvulitis Pathophysiology

Multiple
episodes of
Acute
Rheumatic
Fever (ARF)
first →
pancarditis


© Frank Netter, MD Novartis®

Acute Rheumatic Valvulitis Pathophysiology

- Acute phase subsides
 - Fibrosis alters leaflet and cusp structure
 - Results in leaflet or cuspal thickening along valvular margins of closure
- Valves affected
 - Most often mitral valve alone
 - Then most often mitral and aortic together
 - Lastly aortic alone

Normal mitral valve


Fusion of chordae

© Frank Netter, MD Novartis®

Stenotic mitral valve

Thickening of cusps

Chronic Mitral Stenosis Pathophysiology

- Mitral orifice becomes smaller →
 - Two circulatory changes
 - To maintain LV filling across narrowed valve, left atrial pressure ↑
 - Blood flow across mitral valve is ↓ which → to ↓
 cardiac output

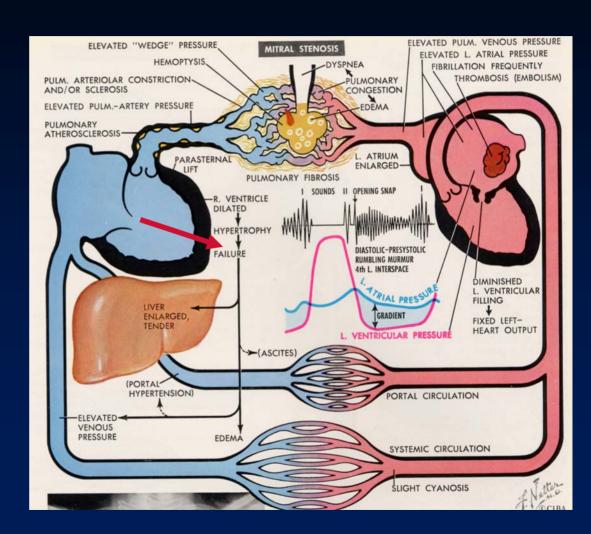
Effects of Mitral Stenosis

- On heart
- On lungs
- On right ventricle

Effect of Mitral Stenosis On Heart

- Left atrium hypertrophies and dilates 2°
 ↑ pressure
 - Atrial fibrillation and mural thrombosis follow
- Left ventricle is "protected" by stenotic mitral valve
 - LV usually normal in size and contour

Effect of Mitral Stenosis On Heart


- Pulmonary arterial pressure ↑
 - Intimal and medial hypertrophy of pulmonary arteries → ↑ pulmonary vascular resistance
- Right ventricle dilates from pressure overload
 - Main pulmonary artery dilates → pulmonary valve regurgitation

Effect of Mitral Stenosis On Heart

- Tricuspid regurgitation develops
 - 2° dilated RV
- Right atrium dilates 2° volume overload
 - Right heart failure

Time course of MS in adult

- Mitral stenosis occurs
- Left atrial pressure ↑
- Left atrium enlarges
- Cephalization
- PIE
- PAH develops
- PVR increases
- RV enlarges
- Pulmonic regurg develops
- Tricuspid annulus dilates
- Tricuspid insufficiency
- RV failure

Effect of Mitral Stenosis On Lungs

- Pulmonary arterial hypertension develops
 - First passively
- Then 2° muscular hypertrophy and hyperplasia → increased pulmonary vascular resistance

Effect of Mitral Stenosis On Lungs

- Chronic edema of alveolar walls → fibrosis
 - Pulmonary hemosiderin deposited in lungs
 - Pulmonary ossification may occur

Effect of Mitral Stenosis on Lungs Normal chamber pressures

RA LA RV LV

M 1-5

D 1-7

M 15

M 5-10

D 5-12 S 90-140

Effect of Mitral Stenosis On Lungs

• ↑ pulmonary venous and capillary pressure

Normal	5-10 mm Hg
Cephalization	10-15 mm
Kerley B Lines	15-20
Pulmonary Interstitial Edema	20-25
Pulmonary Alveolar Edema	> 25

Effect of Mitral Stenosis On Right Ventricle

- RV hypertrophies in response to increased afterload
- Eventually RV fails and dilates
 - Causes dilation of tricuspid annulus → tricuspid regurgitation

X-Ray Findings of MS Cardiac Findings

- Usually normal or slightly enlarged heart
 - Enlarged atria do not produce cardiac enlargement; only enlarged ventricles
- Straightening of left heart border
- Or, convexity along left heart border 2° to enlarged atrial appendage
 - Only in rheumatic heart disease

"Straightening" of left heart border

Mitral Stenosis

Convexity from enlarged left atrial appendage

Mitral Stenosis

Convexity from enlarged left atrial appendage

Mitral Stenosis

X-Ray Findings of MS Cardiac Findings

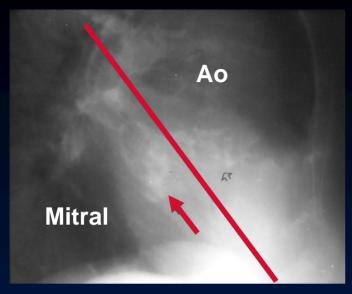
- Small aortic knob from decreased cardiac output
- Double density of left atrial enlargement
- Rarely, right atrial enlargement from tricuspid insufficiency

RA

Small aorta from \downarrow cardiac output

"Double density"

19.5/25=789.


Enlarged L atrial appendage from mitral stenosis

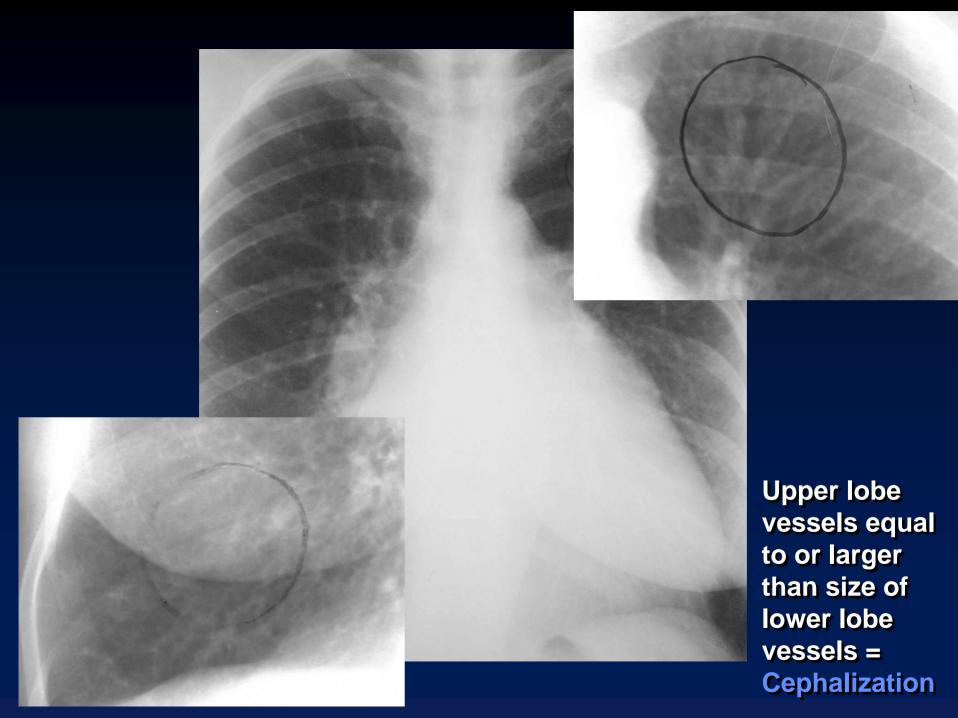
Mitral stenosis/regurgitation with tricuspid regurgitation

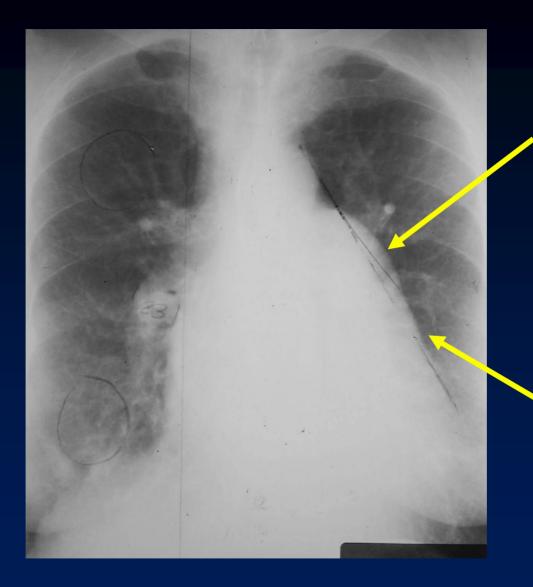

Right atrial enlargement from tricuspid regurgitation

X-Ray Findings of MS Calcifications

- Calcification of valve--not annulus-seen best on lateral film and at angio
- Rarely, calcification of left atrial wall 2° fibrosis from long-standing disease
- Rarely, calcification of pulmonary arteries from PAH

Calcification of mitral valve

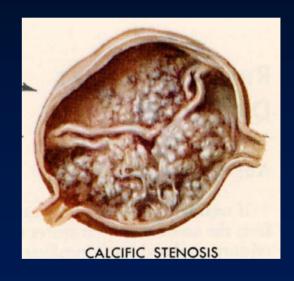

Calcification of left atrial wall



Calcification of pulmonary artery

X-Ray Findings of MS Pulmonary Findings

- Cephalization
- Elevation of left mainstem bronchus (especially if 90° to trachea)
- Enlargement of main pulmonary artery
 2° pulmonary arterial hypertension
 - Severe, chronic disease
- Multiple small hemorrhages in lung
 - Pulmonary hemosiderosis


Enlarged MPA segment from severe pulmonary arterial hypertension

Straightening of left heart border from 1

Mitral Stenosis with severe PAH

Mitral Valve Calcification

- Presence indicates MS
- Calcium usually deposited in clumps on valve leaflets
- Heavier calcific deposits in men than women

© Frank Netter, MD Novartis®

Mitral Annulus Calcification

 Calcification of mitral annulus does not signify presence of mitral valve disease

- Occurs in older women
- Usually asymptomatic
- Rarely → Mitral Stenosis

Mitral Stenosis Other Causes

- MS 2° rheumatic disease 99.8% of cases
 - Congenital mitral stenosis
 - Infective endocarditis
 - Carcinoid syndrome
 - Fabray's Disease
 - Hurler's syndrome
 - Whipple's Disease
 - Left atrial myxoma

Congenital Mitral Stenosis

- Exists as isolated abnormality 25% of time
- Coexists with VSD 30% of time
- Coexists with another form of left ventricular outflow obstruction 40% of time — SHONE'S Syndrome

Shone's Syndrome

- Parachute mitral valve
- Supravalvular mitral ring
- Subaortic stenosis
- Coarctation of aorta

LA Myxoma

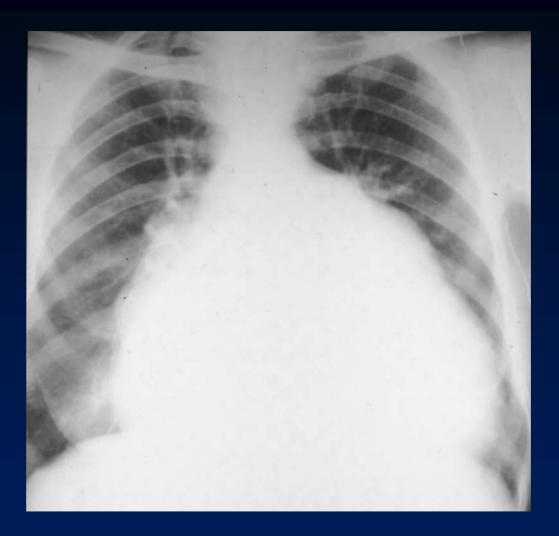
- Most common form of primary cardiac tumor
- 86% of myxomas found in left atrium
- 90% of myxomas are solitary
- Usually occur around fossa ovalis

MS and MR

- Rheumatic mitral stenosis occurs with varying degrees of mitral regurgitation
- When MS is severe, MR is relatively unimportant

Mitral Regurgitation

Mitral Regurgitation Causes


- Thickening of valve leaflets 2° rheumatic disease
- Rupture of the chordae
 - Posterior leaflet more often-Trauma, Marfan's
- Papillary muscle rupture or dysfunction
 - Acute myocardial infarction
- LV enlargement → dilatation of mitral annulus
 - Any cause of LV enlargement
- LV aneurysm → valvular dysfunction
 - Acute myocardial infarction

Mitral Regurgitation General

- The acute lesion of rheumatic fever is mitral regurgitation, not stenosis
- The largest left atria ever are produced by mitral regurgitation, not mitral stenosis

Mitral Regurgitation X-ray Findings

- In acute MR
 - Pulmonary edema
 - Heart is not enlarged
- In chronic MR
 - LA and LV are markedly enlarged
 - Volume overload
 - Pulmonary vasculature is usually normal
 - LA volume but not pressure is elevated

Mitral regurgitation

Mitral regurgitation

Difference in heart size – MS and MR

Mitral Stenosis

Mitral Regurgitation

Aortic Stenosis

Aortic StenosisFrequency of Causes

- Most often as result of degeneration of bicuspid aortic valve
- Less commonly, 2° to degeneration of tricuspid aortic valve in person > 65
- Even less commonly, 2° rheumatic heart disease in tricuspid valve

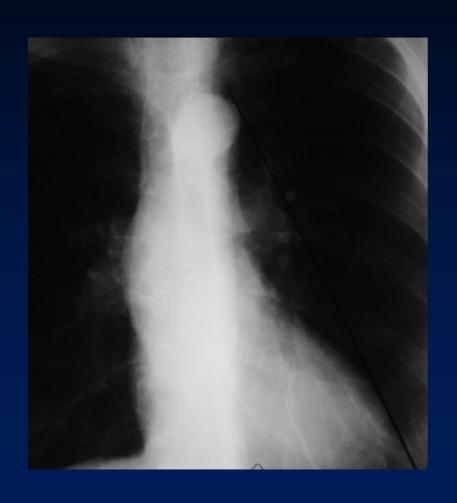
Aortic Stenosis Locations

- Supravalvular
- Valvular
- Subvalvular

Valvular Aortic Stenosis Congenital

Congenital Valvular Aortic Stenosis General

- Bicuspid aortic valve is the most common congenital cardiac anomaly
 - **0.5** –2%
- Usually not stenotic during infancy
- More prone to fibrosis and calcification than normal valve

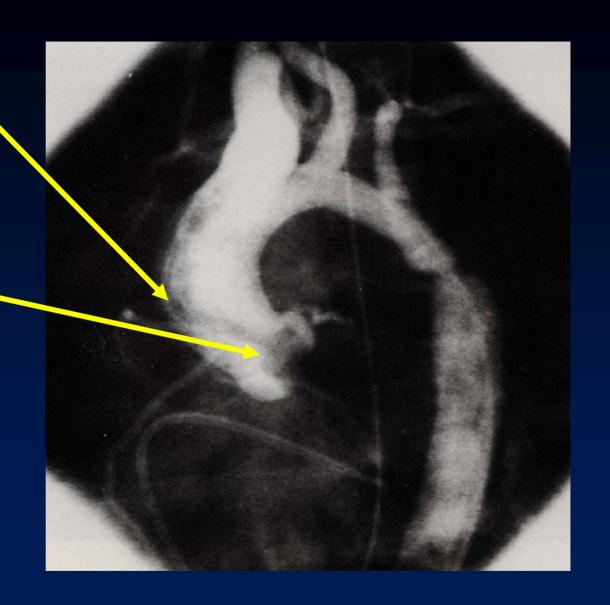

Congenital Valvular Aortic Stenosis Associations

- Many malformations of aorta and/or LV are associated with bicuspid valve
 - 50% with coarctation of aorta
 - Hypoplastic left heart syndrome
 - Interruption of aortic arch

Congenital Valvular Aortic Stenosis Calcification

- Bicuspid valves are most apt to calcify
- Calcification begins earlier (4th decade) than in degenerated tricuspid Ao valve (>65)
 - Early calcification can also occur with Rheumatic heart dz

Calcification of Aortic Valve


Congenital Valvular Aortic Stenosis Angiographic findings

- A non-calcified, bicuspid valve reveals thickening and doming of valve leaflets in systole
- A jet of non-opacified blood is visible through stenotic bicuspid valve
 - Does not occur with acquired AS

Unopacified jet stream through a bicuspid aortic valve

Leaflets are "domed" on systole

Acquired aortic stenosis would not demonstrate this jet stream because severe deformity of valve → turbulent flow

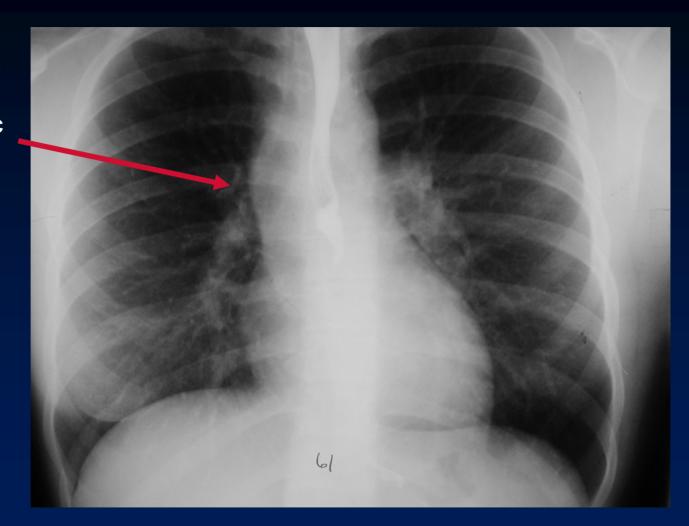
Congenital Valvular Aortic Stenosis Angiographic findings

- Congenitally bicuspid valves usually have 2 aortic sinuses
 - 3 sinuses in acquired AS
- In rheumatic disease, aortic valve commissures usually fuse
 - Don't fuse in degenerated tricuspid valve

Valvular Aortic Stenosis Acquired

Acquired Valvular Aortic Stenosis Causes

- Fusion, thickening or calcification of a tricuspid valve
 - Degenerative process
 - Rheumatic heart disease


Valvular Aortic Stenosis Differentiating Features

Etiology/Findings	Calcification	Other clues
Congenital Bicuspid Valve	30's	Jet effect on aortogram
Degeneration of Tricuspid Valve	> 65	Coronary artery ca++ Commissures don't fuse
Rheumatic dz in Tricuspid Valve	30's here; teens in 3 rd world countries	MS or MR almost always present; commissures fuse

Aortic Stenosis X-Ray Findings

- Depends on age patient/severity of disease
 - In infants, AS →CHF/pulmonary edema
- In adults
 - Normal heart size
 - Until cardiac muscle decompensates
 - Enlarged ascending aorta 2° post-stenotic dilatation 2° turbulent flow
 - Normal pulmonary vasculature

Prominence of ascending aorta from post-stenotic dilatation

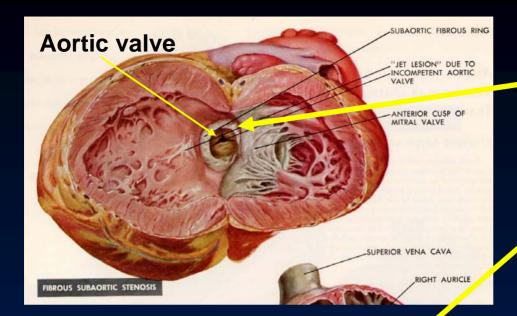
Aortic stenosis

Post-stenotic Dilatation of Aorta

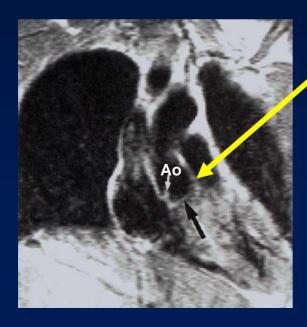
- From turbulent flow just distal to any hemodynamically significant arterial stenosis
 - Jet effect also plays role
- Occurs mostly with valvular aortic stenosis
 - May occur at any age

Prominence of ascending aorta from post-stenotic dilatation

Aortic stenosis


Aortic StenosisCalcification of Valve

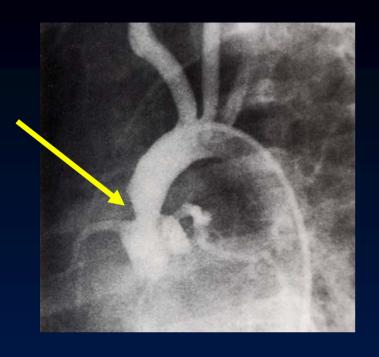
- In females, usually indicates hemodynamically significant AS
- Calcification of valve usually indicates gradient across valve of > 50mm Hg


Subvalvular Aortic Stenosis

Subvalvular Aortic Stenosis Subaortic Stenosis

- Associated with
 - Subaortic fibrous membrane
 - Hypoplastic left heart syndrome
 - Idiopathic Hypertrophic Subaortic Stenosis

© Frank Netter, MD Novartis®

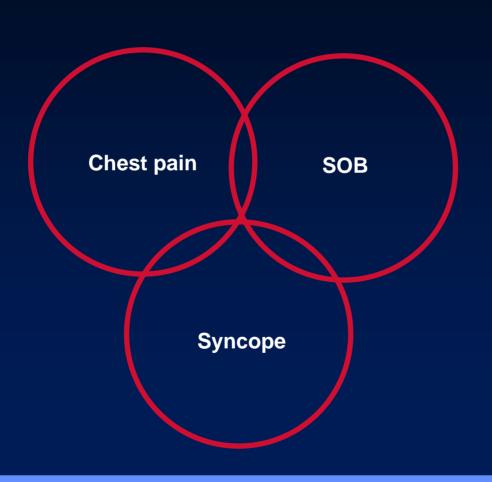

Subaortic Fibrous Membrane

- About 15% of patients with congenital obstruction to LVOF
- Membrane just below aortic valve
- May attach to anterior leaflet of mitral valve
 - Mitral regurg
 - Aortic regurg

Supravalvular Aortic Stenosis

Supravalvular Aortic Stenosis General

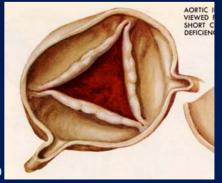
- Uncommon
- Types
 - Hourglass
 - Membrane
 - Hypoplasia of entire ascending aorta
- Associated lesions in 2/3
 - William's syndrome



Supravalvular Aortic Stenosis

- William's syndrome
 - Supravalvular aortic stenosis
 - Hypercalcemia
 - Elfin facies
 - Pulmonary stenoses
 - Hypoplasia of aorta
 - Stenoses in
 - Renals, celiac, SMA

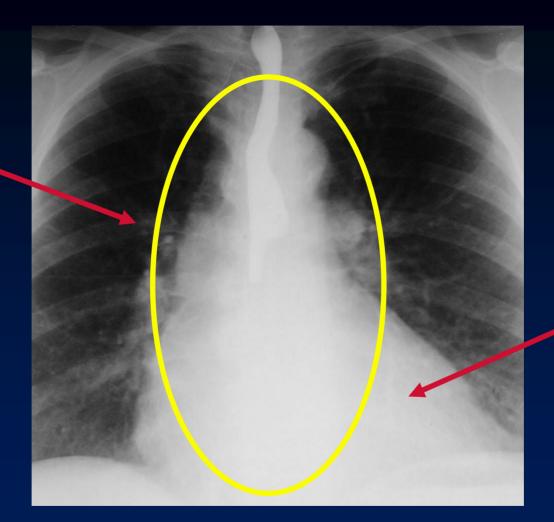
Aortic Stenosis Clinical Triad


Aortic Regurgitation (Aortic Insufficiency)

Aortic Regurgitation Causes

- Rheumatic heart disease
- Marfan's
- Luetic aortitis
- Ehlers-Danlos syndrome
- Endocarditis
- Aortic dissection

Aortic RegurgitationRheumatic Heart Disease


- Thickened cusps
- May have commissural fusion
 - In degenerative Ao regurg, no commissural fusion
- Regurgitant jet is usually central
 - In degenerative, usually not discrete jet

Aortic Regurgitation Imaging Findings

- X-ray hallmarks are
 - Left ventricular enlargement
 - Enlargement of entire aorta
- Cine MRI (gradient refocused MRI)
 - "White blood" technique
 - Signal loss coming from Ao valve into LV during diastole
- Color Doppler is also diagnostic

Enlargement of entire aorta

Enlarged left ventricle

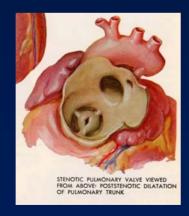
Aortic Regurgitation

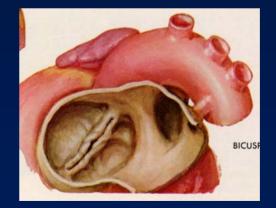
Pulmonic Stenosis

Pulmonic Stenosis General

- Without VSD = 8% of all CHD
- Mostly asymptomatic
- When symptomatic
 - Cyanosis and heart failure
 - Cor pulmonale
- Loud systolic ejection murmur

Pulmonic Stenosis Types


- Subvalvular
- Valvular
- Supravalvular


Pulmonic Stenosis Valvular Pulmonic Stenosis

- Classic pulmonic stenosis (95%)
 - Congenital in origin
 - Associated with metastatic carcinoid syndrome
 - Tricuspid valve dz as well
 - Associated with Noonan Syndrome
 - ASD
 - Hypertrophic cardiomyopathy

Pulmonic Stenosis Valvular Pulmonic Stenosis

- Morphology of abnormal valve
 - Membrane with central opening, or
 - Fusion of pulmonary cusps

© Frank Netter, MD Novartis®

Pulmonic Stenosis Valvular pulmonic stenosis

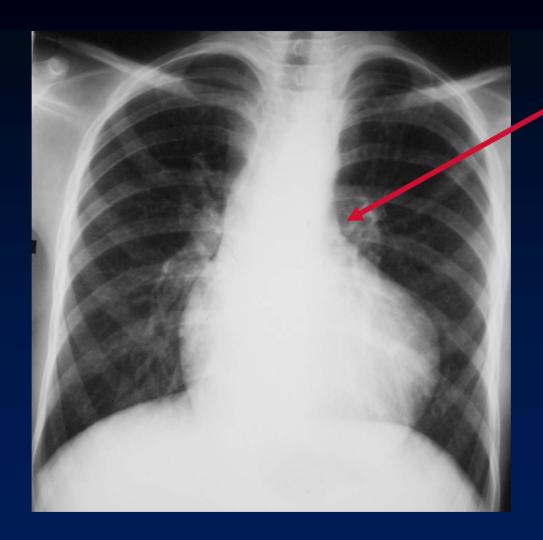

- Presents in childhood
- Pulmonic click
- Dome-shaped pulmonic valve in systole
- RX: Balloon valvulo-plasty

Pulmonic Stenosis X-ray Findings

- Enlarged main pulmonary artery
- Enlarged left pulmonary artery (jet effect)
- Normal to decreased peripheral pulmonary vasculature
- Rare calcification of pulmonary valve in older adults

Prominent main pulmonary artery segment

Normalsized heart



Enlargement of left pulmonary artery

Pulmonic Stenosis

Pulmonic Stenosis Subvalvular pulmonic stenosis

- Infundibular pulmonic stenosis
 - Typically in Tetralogy of Fallot
 - 50% of pts with TOF also have bicuspid pulmonic valves
 - 50% of patients with TOF also have valvular pulmonic stenosis
- Subinfundibular pulmonic stenosis
 - Associated with VSD (85%)

Concave pulmonary artery segment

Tetralogy of Fallot with subvalvular pulmonic stenosis

Trilogy of Fallot

- Severe pulmonic valvular stenosis
- RV hypertrophy
- ASD with R → L shunt

Supravalvular Pulmonic Stenosis General

 May be either tubular hypoplasia or localized with poststenotic dilatation

Supravalvular Pulmonic Stenosis Associated CV abnormalities

- Valvular pulmonary stenosis
- Supravalvular aortic stenosis
- VSD, PDA
- Systemic arterial stenoses

Supravalvular Pulmonic Stenosis Associated Syndromes

- Williams Syndrome
 - Pulmonic Stenosis
 - Supravalvular AS
 - Peculiar facies
- Post-rubella syndrome
- Carcinoid syndrome with liver mets
- Ehlers-Danlos syndrome

The End