William Herring, M.D. © 2002

Left to Right Shunts

In Slide Show mode, to advance slides, press spacebar or click left mouse button

7 yo acyanotic female

Atrial Septal Defect

Atrial Septal Defect Four Major Types

- Ostium secundum
- Ostium primum
- Sinus venosus
- Posteroinferior

Atrial Septal Defect General

4:1 ratio of females to males

 Most frequent congenital heart lesion initially diagnosed in adult

Frequently associated with Ellis-van
 Creveld and Holt-Oram syndromes

Associated with prolapsing mitral valve

Atrial Septal Defect Ostium Secundum Type

Most common is ostium secundum (60%) located at fossa ovalis
High association with prolapse of mitral valve

© Frank Netter, MD Novartis®

Atrial Septal Defect Ostium Primum Type

 Ostium primum type usually part of endocardial cushion defect
 Frequently associated with cleft mitral and tricuspid valves
 Tends to act like VSD physiologically

Looking through ostium primum defect at cleft mitral valve

Proximity of ostium primum defect to tricuspid valve

Atrial Septal Defect Sinus Venosus Type

 Sinus venosus type located high in inter-atrial septum

 90% association of anomalous drainage of R upper pulmonary vein with SVC or right atrium

Partial anomalous pulmonary venous return

© Frank Netter, MD Novartis®

Right atrium open looking into left atrium through ASD

Atrial Septal Defect Posteroinferior Type

Most rare type

 Associated with absence of coronary sinus and left SVC emptying into LA

Atrial Septal Defect Pulmonary Hypertension

Rare in ostium secundum variety (<6%)
 Low pressure shunt from LA → RA
 More common in ostium primum variety
 Behaves physiologically like VSD

37 yo female with severe PAH 2° ostium primum type of ASD

Atrial Septal Defect X-Ray Findings

Enlarged pulmonary vessels
Normal-sized left atrium
Normal to small aorta

Atrial Septal Defect Complications

Large shunts associated with

Pulmonary infections and cardiac arrythmias

Higher incidence of pericardial disease with ASD than any other CHD
Bacterial endocarditis is rare

Differentiating ASD, PDA and VSD

Atrial Septal Defect Why the Left Atrium Isn't Enlarged

1 yo acyanotic female

Ventricular Septal Defect

Ventricular Septal Defect General

- Most common $L \rightarrow R$ shunt
- Shunt is actually from left ventricle into pulmonary artery more than into right ventricle

Ventricular Septal Defect Types

- Membranous
- Supracristal
- Muscular
- AV canal

Ventricular Septal Defect Membranous

 Membranous = perimembranous VSD (75-80%-most common)

- Location: Posterior and inferior to crista supraventricularis near right and posterior (=non-coronary) aortic valve cusps
- Associated with: small aneurysms of membranous septum

Right ventricle opened

Aneurysm of membranous septum

Normal

© Frank Netter, MD Novartis®

© Frank Netter, MD Novartis®

Ventricular Septal Defect Supracristal

- Supracristal = conal VSD (5%–least common)
- Crista supraventricularis= inverted Ushaped muscular ridge posterior and inferior to the pulmonic valve high in interventricular septum
- On CXR: right aortic valve cusp may herniate → aortic insufficiency

LV open

RV open

© Frank Netter, MD Novartis®

Ventricular Septal Defect Muscular

- Muscular VSD (5–10%)
- Low and anterior within trabeculations of muscular septum
- May consist of multiple VSDs = "swisscheese septum"

© Frank Netter, MD Novartis®

Ventricular Septal Defect AV Canal

- Atrioventricular canal = endocardial cushion type = posterior VSD (5–10%)
- Location: adjacent to septal and anterior leaflet of mitral valve
- Large VSD → pulmonary hypertension, eventually shunt reversal
 - Eisenmenger's physiology
- Very large VSD → CHF soon after birth

Ventricular Septal Defect Natural History

 Natural history of VSD is affected by two factors:

- Location of defect
 - Muscular and perimembranous have high incidence of spontaneous closure
 - Endocardial cushion defects have low rate of closure

Ventricular Septal Defect Natural History

Size of the defect
 Larger the defect, more likely to → CHF
 Smaller the defect, more likely to be asymptomatic

Ventricular Septal Defect Eisenmenger Physiology

- Progressive increase in pulmonary vascular resistance
 - Intimal and medial hyperplasia →
 - Reversal of $L \rightarrow R$ shunt to $R \rightarrow L$ shunt
 - Cyanosis

Ventricular Septal Defect Clinical Course

Neonates usually asymptomatic because of high pulmonary vascular resistance from birth to 6 weeks
Common cause of CHF in infancy
Bacterial endocarditis may develop
Severe pulmonary hypertension →

Eisenmenger's physiology/cyanosis
Ventricular Septal Defect X-ray Findings

Prominent main pulmonary artery
Adult

 Shunt vasculature (increased flow to the lungs)

LA enlargement (80%)

Aorta normal in size

5 yo acyanotic male

Ventricular Septal Defect Why Left Atrium Is Enlarged

4 mos old acyanotic female

Ventricular Septal Defect Prognosis

Spontaneous closure occurs in 40% during first 2 years of life
60% by 5 years

Ventricular Septal Defect Indications For Surgery

- Greater than 2:1 shunt, surgery required before pulmonary arterial hypertension develops
- CHF unresponsive to medical management
- Failure to grow
- Supracristal defects because of their high incidence of AI

8 mos old acyanotic female

Patent Ductus Arteriosus

Patent Ductus Arteriosus General

Higher incidence in

- Trisomy 21
- Trisomy 18
- Rubella
- Preemies

Predominance in females 4:1

Patent Ductus Arteriosus Anatomy

 Ductus connects pulmonary artery to descending aorta just distal to left subclavian artery

Ductus Arteriosus

© Frank Netter, MD Novartis®

Ductus Arteriosus Physiology

 In fetal life, shunts blood from pulmonary artery to aorta
 At birth, increase in arterial oxygen concentration ↑ constriction of ductus

Ductus Arteriosus Normal Closure

Functional closure
By 24 hrs of life
Normal anatomic closure
Complete by 2 months in 90%
Closure at 1 year in 99%

Patent Ductus Arteriosus Pathophysiology

 Ductus may persist Because of defect in muscular wall of ductus, or Chemical defect in response to oxygen Anatomic persistence of ductus beyond 4 months is abnormal Blood is shunted from aorta to pulmonary arteries

Patent Ductus Arteriosus Clinical

- Common cause of CHF in premature infants
 - Usually at age 1 week (after HMD subsides and pulmonary arterial pressure falls)
- Wide pulse pressure
- Continuous murmur

Patent Ductus Arteriosus X-ray Findings

- Cardiomegaly
- Enlarged left atrium
- Prominent main pulmonary artery (adult)
- Prominent peripheral pulmonary vasculature
- Prominence of ascending aorta

Patent Ductus Arteriosus Why Left Atrium Is Enlarged

Patent Ductus Arteriosus Calcifications

 Punctate calcification at site of closed ductus is normal finding

 Linear or railroad track calcification at site of ductus may be seen in adults with PDA

Patent Ductus Arteriosus Prognosis

Spontaneous closure may occur

Patent Ductus Arteriosus Complications

• CHF

- Failure to grow
- Pulmonary infections
- Bacterial endocarditis
- Eisenmenger's physiology with advanced lesions

2 yo old cyanotic female

Partial or Total Anomalous Pulmonary Venous Return

Cyanosis With Increased Vascularity

Truncus types I, II, III
TAPVR
Tricuspid atresia*
Transposition*
Single ventricle

* Also appears on DDx of Cyanosis with Inc Vascularity

Two Types

Partial (PAPVR)

- Mild physiologic abnormality
- Usually asymptomatic
- Total (TAPVR)
 - Serious physiologic abnormalities

Return of blood from lungs is by four pulmonary veins to LA

RA	LA
RV	LV
PA	Ao

Normal heart

PAPVR General

 One of the four pulmonary veins may drain into right atrium

- Mild or no physiologic consequence
- Associated with ASD
 - Sinus venosus or ostium secundum types

Partial Anomalous Pulmonary Return

TAPVR General

 All have shunt through lungs to Ü R side of heart

- All must also have R → L shunt for survival
 - Obligatory ASD to return blood to the systemic side
- All are cyanotic

Identical oxygenation in all four chambers

TAPVR Types

- Supracardiac
- Cardiac
- Infracardiac
- Mixed

TAPVR Supracardiac Type—Type I

- Most common (52%)
- Pulmonary veins drain into vertical vein (behind left pulmonary artery)
 → left brachiocephalic vein → SVC
 DDx: VSD with large thymus

Left Brachiocephalic vein

Right superior vena cava

> Right atrium

Left superior vena cava

Vertical vein

Pulmonary veins

© Frank Netter, MD Novartis®

TAPVR-Supracardiac Type 1

TAPVR-Supracardiac Type 1

TAPVR Supracardiac Type 1—X-ray Findings

- Snowman heart = dilated SVC+ left vertical vein
- Shunt vasculature 2° increased return to right heart
- Enlargement of right heart 2° volume overload

TAPVR-Supracardiac Type 1

ASD provides R → L shunt to allow oxygenated blood to reach body (moderate cyanosis)

Blood from lungs drains into left vertical vein to L SVC

Increased return to right heart overloads lungs → shunt vessels

TAPVR–Type I–Supracardiac type

TAPVR Cardiac Type—Type II

 Second most common: 30% • Drains into coronary sinus or RA Coronary sinus more common Increased pulmonary vasculature Overload of RV → CHF after birth • 20% of I's and II's survive to adulthood Remainder expire in first year

[©] Frank Netter, MD Novartis®

TAPVR-Coronary Sinus-Type II

Increased return to right heart overloads lungs → shunt vessels

TAPVR–Type II–Cardiac Type

TAPVR Infracardiac Type—Type III

- Percent of total: 12%
- Long pulmonary veins course down along esophagus
- Empty into IVC or portal vein (more common)
- Vein constricted by diaphragm as it passes through esophageal hiatus

Portal vein 👡

Pulmonary veins

© Frank Netter, MD Novartis®

TAPVR-Type III-Infradiaphragmatic

TAPVR Infracardiac Type—Continued

 Severe CHF (90%) 2° obstruction to venous return

 Cyanotic 2° right Ü left shunt through ASD

 Associated with asplenia (80%), or polysplenia

Prognosis=death within a few days

TAPVR–Type III–Infracardiac type

TAPVR Mixed Type—Type IV

Percent of total: 6%
Mixtures of types I – III

Unknowns

ASD (primum) with PAH

TAPVR from below diaphragm

ASD

The End