William Herring, M.D. © 2003

Cyanotic Heart Disease

In Slide Show mode, to advance slides, press spacebar or click left mouse button

Cyanosis With Decreased Vascularity

- Tetralogy
- Truncus-type IV
- Tricuspid atresia*
- Transposition*
- Ebstein's

* Also appears on DDx of Cyanosis with \uparrow Vascularity

Cyanosis With Increased Vascularity

Truncus types I, II, III
TAPVR
Tricuspid atresia*
Transposition*
Single ventricle

* Also appears on DDx of Cyanosis with \downarrow Vascularity

Tetralogy of Fallot General

 About 10% of all congenital heart lesions
 Most common cause of cyanotic heart disease beyond neonatal period

Tetralogy of Fallot Components

- High VSD
- Pulmonic stenosis, i.e. right ventricular outflow obstruction
 - Usually infundibular, sometimes valvular
- Overriding of the aorta
- Right ventricular hypertrophy

© Frank Netter, MD Novartis®

Tetralogy of Fallot Other anomalies

- Right aortic arch in 25%
 Mirror image type
- Left superior vena cava
- ASD
- Tricuspid valve abnormalities
- Anomalies of coronary arteries
 - Aberrant left anterior descending coronary artery arising from right coronary artery

Tetralogy of Fallot Other anomalies

- Abnormalities of the pulmonary artery and its branches
 - Peripheral PA coarctations, unilateral
 - Absence or hypoplasia of pulmonary artery
 - Usually left
 - Absence of pulmonic valve
 - Bicuspid pulmonic valve

Tetralogy of Fallot Critical Component

Degree of pulmonic stenosis

- Regulates degree of R → L shunt
- Regulates overriding of aorta

 Greater the stenosis, the greater the aortic overriding

Tetralogy of Fallot Clinical findings

- Squatting
- Dyspnea
- Failure to thrive
- Cyanosis-usually

- Severe cases ↔ at birth ↔ severe PS
- "Pink tets" (acyanotic) and "Blue tets" (cyanotic)

Tetralogy of Fallot Imaging Findings

- Heart size normal
 - Rarely enlarged
- Cardiac apex displaced upward "coer en sabot"
- PA segment concave
- Decreased vasculature
- R aortic arch in 25%

Trilogy of Fallot

- Pulmonic valvular stenosis
- ASD
- Right ventricular hypertrophy

Truncus Arteriosus

Truncus Arteriosus Embryology

 Uncommon anomaly 2° failure of primitive common truncus arteriosus to divide into aorta and pulmonary artery

Truncus Arteriosus General

The truncal valve is usually tricuspid

- Main pulmonary artery segment is concave in types II, III, and IV
- Pulmonary vasculature is shunt type in types I, II and III

Truncus Arteriosus Right sided aortic arch

Right-sided arch in about 33%
Usually mirror image type
But because truncus is so rare, it accounts for only 6% of all right arches

Truncus Arteriosus Triad

Truncus Arteriosus Associations

- VSD
 - Always

Anomalies of the coronary arteries

Truncus Arteriosus Clinical Findings

Infants and small children demonstrate
 L → R shunt

- Minimal cyanosis
- CHF
- Respiratory infections
- Growth disturbances
- Majority are dead by 6 mos

Truncus Arteriosus Clinical Findings

Cyanosis is worse in II and III
Can't tell them apart clinically
Associated anomalies

Bony
Renal
Lung

Cleft palate

Truncus Arteriosus X-ray Findings

- Cardiomegaly
- Right aortic arch (33%)
- Concave pulmonary artery segment
- Enlarged left atrium in 50%
- Displacement of hilum
 - Elevated right hilum in 20%
 - Left hilum in 10%

Truncus-Type I

Convex pulmonary artery segment

Right Ao Arch

Truncus Type 1

Truncus Type 1

Uncommon (25%)

Pulmonary arteries arise posteriorly from aorta

Shunt vessels

Concave main pulmonary artery

Truncus-Type II

Truncus Type II

Right and left pulmonary arteries arise laterally

Shunt vessels

Concave main pulmonary artery

Truncus-Type III

Truncus Type III

Truncus-Type IV (TOF with pulmonary atresia)

Bronchial Circulation

Increased flow

Truncus Arteriosus

	Pulmonary artery	Shunt vessels	
	Convex	Yes	
	Concave	Yes	
	Concave	Yes	
IV	Concave	Bronchial circulation	

Truncus Arteriosus Angiographic Findings

- On angiogram, truncal valve (common valve) may have 2-6 cusps
 - Most often tricuspid
- In lateral projection, plane of truncal valve is distinctive
 - Tilts anteriorly toward patient's toes
 - Helpful to distinguish truncus from aorticopulmonary window or TOF with pulmonic atresia

Tricuspid Atresia

Tricuspid Atresia

- Fusion of dorsal and ventral endocardial cushions occurs too far to the right → obliteration of tricuspid valve, and
- Hypoplasia of right heart
 Tricuspid valve, Right ventricle and pulmonary artery

Tricuspid Atresia Shunts needed

- Complete obstruction to outflow from RA
 - Need R → L shunt: Patent foramen ovale or ASD
 - Small ASD → elevated RA pressures and enlarged RA
 - Large ASD → lower RA pressures and minimal enlargement of RA
- Blood in L heart must get back to lungs
 - Also have associated VSD or PDA

Tricuspid Atresia Transposition of Great Vessels

- 70% have normal relationships of great vessels
- 30% have transposition of great arteries

Tricuspid Atresia Two main types

No Transposition of the Great Arteries
Some degree of PS

Majority (70%)

Transposition of the Great Arteries
No pulmonic stenosis

Minority (30%)

Tricuspid atresia—no transposition

Some unsaturated blood exits aorta

Tricuspid atresia—no transposition

Tricuspid atresia—with transposition

Tricuspid atresia X-ray Findings - No transposition

- Normal-sized heart
- Decreased pulmonary vessels (60-70%)
- Flat/concave pulmonary artery
- Small ASD → enlarged RA
- Large ASD → normal or slightly enlarged RA

Tricuspid atresia—some PS, no transposition

Tricuspid atresia X-ray Findings - Transposition

- Mild cardiomegaly
- Engorged pulmonary vessels
- No characteristic appearance to heart

Tricuspid atresia—no PS, shunt vessels

Transposition of The Great Vessels

The "TR" Lesions Cyanosis with \uparrow or \uparrow vasculature

Tricuspid atresia
Transposition
Truncus arteriosus
Type I, II, III
Type IV
Tetralogy
TAPVR

TrEbstein's

 \uparrow or ↓ \uparrow or ↓

The Rules

- Since anatomic side (i.e. "left" or "right") in complex lesions is frequently reversed or indeterminate
- Naming conventions for
 - Atria
 - AV valves
 - Ventricles
 - Ventricular outflow tracts

The Rules How the atria are named

- Anatomic right atrium is on the side of the trilobed lung and liver
 - Trilobed lung=upper, middle and lower
- The anatomic left atrium is on the side of the bilobed lung and spleen
 - Bilobed lung=upper and lower

The Rules Mitral and tricuspid valves

- The tricuspid valve belongs to the anatomic right ventricle
 - Not right atrium
- The mitral valve belongs to the anatomic left ventricle
 - Not left atrium

The Rules How the ventricles are named

- The anatomic right ventricle is the trabeculated ventricle
- The anatomic left ventricle is the smooth-walled ventricle

The Rules Aortic and pulmonic valves

- The pulmonic valve is part of pulmonary artery
 - Not anatomic right ventricle
- The aortic valve is part of aorta
 - Not anatomic left ventricle
- The pulmonic infundibulum is part of anatomic right ventricle

Anatomic **Right ventricle** is trabeculated

Normal heart

Pulmonic infundibulum always stays with the anatomic R ventricle

Anatomic

smooth

Normal relationship of aortic to pulmonic valves

Pulmonic valve is Anterior Lateral Superior To the aortic valve PALS

© Frank Netter, MD Novartis®

In Transposition, pulmonic valve is

PosteriorMedialInferiorTo the aortic valve

Normal

Corrected Transposition

Corrected Transposition Inversion of the Ventricles With Transposition

- Physiologically flow is normal
- Consistent with normal life, except
- Frequently associated with
 - VSD
 - Tricuspid insufficiency
 - Subpulmonic stenosis
 - Complete heart block

Normal vasculature; or increased with VSD

PA arises from anatomic left ventricle

Acyanotic

Aorta arises from pulmonic infundibulum

Corrected Transposition (L-Trans) Inversion of the Ventricles with Transposition of the Great Vessels

Corrected Transposition

Corrected Transposition

Transposition of the Great Arteries General

- Second most common cause of cyanosis in infancy
- Pulmonary and systemic circulations form two separate circuits

(\sum	\sim	
/	RA 🔶	→ LA	
	^^	→	

Must be mixing between two circuits for life

Transposition of the Great Arteries Associated abnormalities

- About 1/3 have VSD
 - Larger the shunt, more likely CHF
- About ¼ to ¼ have patent ductus
- Some have ASD

 Other major finding is obstruction to blood entering pulmonary artery
 Usually subpulmonic stenosis

Transposition of the Great Arteries X-ray findings

- Mild cardiomegaly
- Concave pulmonary artery segment
- Narrow mediastinum (Egg-on-string)
- Shunt vessels

Transposition of the Great Vessels Cyanotic with - vasculature

Transposition of the Great Vessels -RVgram

Transposition of the Great Vessels -LVgram

Narrow waist in Transposition LVgram with VSD but normal Ao and PA relationships Corrected Transposition With VSD

Inversion of the ventucies Without Transposition

Cyanotic

Ebstein's Anomaly

Ebstein's Anomaly General

Rare

- Posterior and septal cusps of tricuspid valve displaced in to right ventricle
 - Right ventricle smaller or "atrialized"
- Tricuspid insufficiency → ↑ right atrial pressure → a R → L shunt through foramen ovale (or ASD)
 - Cyanosis is present in neonate

© Frank Netter, MD Novartis®

Ebstein's Anomaly

© Frank Netter, MD Novartis®

Ebstein's Anomaly

Normal

Ebstein's Anomaly X-ray Findings

Cardiomegaly

- One of few conditions → cardiomegaly first few days of life
- Unusual prominence to right heart border
- Pulmonary flow is decreased

Ebstein's Anomaly

Ebstein's Anomaly

Ebstein's Anomaly Triad

Single Ventricle

Single Ventricle

Surprise!

- There are usually two ventricles in this disease
- Single ventricle: one ventricle with two atria
- Three types of Single Ventricle
 - Morphologic LV with a rudimentary RV (common)
 - Morphologic RV with a rudimentary LV (rare)
 - Morphologically indeterminate ventricle (rare)

Single Ventricle

Most common

- Morphologic LV with rudimentary RV
- Also called
 - Double-inlet left ventricle
 - Common ventricle
 - Univentricular heart
- Frequently difficult to determine which anatomic ventricle is present

Single Ventricle Associated Findings

Pulmonic stenosis

- Valvular or subvalvular (66%)
- Pulmonary atresia
- PAPVR
- PDA

© Frank Netter, MD Novartis®

Single Ventricle Imaging Findings

- No characteristic appearance
- Concave pulmonary artery segment
- Shunt vessels

Single ventricle

The End