Cyanotic Heart Disease
Cyanosis With Decreased Vascularity

- **Tetralogy**
- **Truncus-type IV**
- **Tricuspid atresia***
- **Transposition***
- **Ebstein's***

* Also appears on DDx of Cyanosis with ↑ Vascularity
Cyanosis With Increased Vascularity

- Truncus types I, II, III
- TAPVR
- Tricuspid atresia*
- Transposition*
- Single ventricle

* Also appears on DDx of Cyanosis with ↓ Vascularity
Tetralogy of Fallot
<table>
<thead>
<tr>
<th>Tetralogy of Fallot General</th>
</tr>
</thead>
</table>

- About 10% of all congenital heart lesions
- Most common cause of cyanotic heart disease beyond neonatal period
Tetralogy of Fallot
Components

- High VSD
- Pulmonic stenosis, i.e. right ventricular outflow obstruction
 - Usually infundibular, sometimes valvular
- Overriding of the aorta
- Right ventricular hypertrophy
Tetralogy of Fallot
Tetralogy of Fallot
Other anomalies

- Right aortic arch in 25%
 - Mirror image type
- Left superior vena cava
- ASD
- Tricuspid valve abnormalities
- Anomalies of coronary arteries
 - Aberrant left anterior descending coronary artery arising from right coronary artery
Tetralogy of Fallot
Other anomalies

- Abnormalities of the pulmonary artery and its branches
 - Peripheral PA coarctations, unilateral
 - Absence or hypoplasia of pulmonary artery
 - Usually left
 - Absence of pulmonic valve
 - Bicuspid pulmonic valve
Tetralogy of Fallot
Critical Component

- Degree of pulmonic stenosis
 - Regulates degree of R → L shunt
 - Regulates overriding of aorta
 - Greater the stenosis, the greater the aortic overriding
Tetralogy of Fallot
Clinical findings

• Squatting
• Dyspnea
• Failure to thrive
• Cyanosis-usually
• Severe cases ↔ at birth ↔ severe PS
• Mild cases ↔ much later ↔ mild PS
• “Pink tets” (acyanotic) and “Blue tets” (cyanotic)
Tetralogy of Fallot
Imaging Findings

- Heart size normal
 - Rarely enlarged
- Cardiac apex displaced upward “coeur en sabot”
- PA segment concave
- Decreased vasculature
- R aortic arch in 25%
Tetralogy of Fallot
Tetralogy of Fallot
Tetralogy of Fallot
Trilogy of Fallot

- Pulmonic valvular stenosis
- ASD
- Right ventricular hypertrophy
Truncus Arteriosus
Truncus Arteriosus
Embryology

• Uncommon anomaly 2° failure of primitive common truncus arteriosus to divide into aorta and pulmonary artery
Truncus Arteriosus
General

- The truncal valve is usually tricuspid
- Main pulmonary artery segment is concave in types II, III, and IV
- Pulmonary vasculature is shunt type in types I, II and III
Truncus Arteriosus
Right sided aortic arch

- Right-sided arch in about 33%
 - Usually mirror image type
- But because truncus is so rare, it accounts for only 6% of all right arches
Truncus Arteriosus Triad

- Right aortic arch
- Increased flow
- Cyanosis
Truncus Arteriosus
Associations

- VSD
 - Always
- Anomalies of the coronary arteries
Truncus Arteriosus
Clinical Findings

- Infants and small children demonstrate L → R shunt
 - Minimal cyanosis
 - CHF
 - Respiratory infections
 - Growth disturbances
- Majority are dead by 6 mos
Truncus Arteriosus

Clinical Findings

- Cyanosis is worse in II and III
 - Can’t tell them apart clinically
- Associated anomalies
 - Bony
 - Renal
 - Lung
 - Cleft palate
Truncus Arteriosus
X-ray Findings

- Cardiomegaly
- Right aortic arch (33%)
- Concave pulmonary artery segment
- Enlarged left atrium in 50%
- Displacement of hilum
 - Elevated right hilum in 20%
 - Left hilum in 10%
Truncus-Type I

Most common (75%)

PA arises on left via short common stem

Shunt vessels

Convex pulmonary artery segment
Truncus Type 1
Truncus Type 1
Pulmonary arteries arise posteriorly from aorta

Truncus-Type II

Uncommon (25%)

Shunt vessels

Concave main pulmonary artery
Truncus Type II
Right and left pulmonary arteries arise laterally

Rare (5%)

Concave main pulmonary artery

Shunt vessels

Truncus-Type III
Truncus Type III
Truncus-Type IV

No pulmonary arteries

Bronchial circulation

TOF with pulmonary atresia

Concave main pulmonary artery

Rare to non-existent
Truncus-Type IV
(TOF with pulmonary atresia)
Bronchial Circulation

Increased flow
Truncus Arteriosus

<table>
<thead>
<tr>
<th></th>
<th>Pulmonary artery</th>
<th>Shunt vessels</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Convex</td>
<td>Yes</td>
</tr>
<tr>
<td>II</td>
<td>Concave</td>
<td>Yes</td>
</tr>
<tr>
<td>III</td>
<td>Concave</td>
<td>Yes</td>
</tr>
<tr>
<td>IV</td>
<td>Concave</td>
<td>Bronchial circulation</td>
</tr>
</tbody>
</table>
Truncus Arteriosus
Angiographic Findings

- On angiogram, truncal valve (common valve) may have 2-6 cusps
 - Most often tricuspid
- In lateral projection, plane of truncal valve is distinctive
 - Tilts anteriorly toward patient’s toes
 - Helpful to distinguish truncus from aorticopulmonary window or TOF with pulmonic atresia
Tricuspid Atresia
Tricuspid Atresia

- Fusion of dorsal and ventral endocardial cushions occurs too far to the right → obliteration of tricuspid valve, and
- Hypoplasia of right heart
 - Tricuspid valve, Right ventricle and pulmonary artery
Tricuspid Atresia
Shunts needed

- Complete obstruction to outflow from RA
 - Need R → L shunt: Patent foramen ovale or ASD
 - Small ASD → elevated RA pressures and enlarged RA
 - Large ASD → lower RA pressures and minimal enlargement of RA
- Blood in L heart must get back to lungs
 - Also have associated VSD or PDA
Tricuspid Atresia
Transposition of Great Vessels

- 70% have normal relationships of great vessels
- 30% have transposition of great arteries
Tricuspid Atresia
Two main types

• No Transposition of the Great Arteries
 • Some degree of PS
 • Majority (70%)

• Transposition of the Great Arteries
 • No pulmonic stenosis
 • Minority (30%)
Tricuspid atresia—no transposition
Tricuspid atresia—no transposition

- Systemic blood cannot enter RV
- Blood returns to right heart and then lungs either through VSD or PDA
- Need R → L shunt through patent foramen ovale
- Some unsaturated blood exits aorta

Tricuspid atresia—no transposition
Tricuspid atresia—with transposition

Systemic blood cannot enter RV

Need R → L shunt through patent foramen ovale

Oxygenated blood returns to LA

Un-oxygenated blood flows to lung via transposed PA

Tricuspid atresia—with transposition

Need L → R shunt to get blood into body
Tricuspid atresia
X-ray Findings - No transposition

• Normal-sized heart
• Decreased pulmonary vessels (60-70%)
• Flat/concave pulmonary artery
• Small ASD → enlarged RA
• Large ASD → normal or slightly enlarged RA
Tricuspid atresia—some PS, no transposition
Tricuspid atresia
X-ray Findings - Transposition

- Mild cardiomegaly
- Engorged pulmonary vessels
- No characteristic appearance to heart
Tricuspid atresia—no PS, shunt vessels
Transposition of The Great Vessels
The “TR” Lesions
Cyanosis with ↑ or ↑ vasculature

- **Tricuspid atresia**
 ↑ or ↓
- **Transposition**
 ↑ or ↓
- **Truncus arteriosus**
 - Type I, II, III
 ↑
 - Type IV
 ↓
- **Tetralogy**
 ↓
- **TAPVR**
 ↑
- **TrEbstein’s**
 ↓
The Rules

• Since anatomic side (i.e. “left” or “right”) in complex lesions is frequently reversed or indeterminate

• Naming conventions for
 • Atria
 • AV valves
 • Ventricles
 • Ventricular outflow tracts
The Rules

How the atria are named

• Anatomic right atrium is on the side of the trilobed lung and liver
 • Trilobed lung=upper, middle and lower

• The anatomic left atrium is on the side of the bilobed lung and spleen
 • Bilobed lung=upper and lower
The Rules
Mitral and tricuspid valves

- The tricuspid valve belongs to the anatomic right ventricle
 - Not right atrium
- The mitral valve belongs to the anatomic left ventricle
 - Not left atrium
The Rules

How the ventricles are named

- The anatomic right ventricle is the trabeculated ventricle
- The anatomic left ventricle is the smooth-walled ventricle
The Rules
Aortic and pulmonic valves

- The pulmonic valve is part of pulmonary artery
 - Not anatomic right ventricle
- The aortic valve is part of aorta
 - Not anatomic left ventricle
- The pulmonic infundibulum is part of anatomic right ventricle
Normal heart

Anatomic Right ventricle is trabeculated

Anatomic Left ventricle is smooth

Pulmonic infundibulum always stays with the anatomic R ventricle
Normal relationship of aortic to pulmonic valves

- Pulmonic valve is
 - Anterior
 - Lateral
 - Superior

To the aortic valve

PALS

© Frank Netter, MD Novartis®
In Transposition, pulmonic valve is

Posterior
Medial
Inferior
To the aortic valve

Normal Corrected Transposition
Corrected Transposition
Inversion of the Ventrices With Transposition

- Physiologically flow is normal
- Consistent with normal life, except
- Frequently associated with
 - VSD
 - Tricuspid insufficiency
 - Subpulmonic stenosis
 - Complete heart block
Corrected Transposition (L-Trans) Inversion of the Ventricles with Transposition of the Great Vessels

Normal vasculature; or increased with VSD

PA arises from anatomic left ventricle

Aorta arises from pulmonic infundibulum

Acyanotic

RA

LV

LA

RV

PA
Corrected Transposition

Director of Medical Illustration, Department of Obstetrics and Gynecology, and Clinical Professor of Obstetrics and Gynecology, Albert Einstein College of Medicine, Manhattan, New York. The Syndicate, Inc., 1942. Reprinted by permission of Appleton-Century-Crofts, Inc. and Novartis Consumer Health Inc.
Corrected Transposition
Corrected Transposition
Transposition of the Great Arteries

General

- Second most common cause of cyanosis in infancy
- Pulmonary and systemic circulations form two separate circuits
- Must be mixing between two circuits for life
Transposition of the Great Arteries
Associated abnormalities

- About 1/3 have VSD
 - Larger the shunt, more likely CHF
- About ¼ to ½ have patent ductus
- Some have ASD
- Other major finding is obstruction to blood entering pulmonary artery
 - Usually subpulmonic stenosis
Transposition of the Great Vessels (D-Trans)

Cyanotic with increased vasculature

Obligatory shunt since there are 2 separate circulations

Aorta arises from pulmonic infundibulum

PA arises from anatomic left ventricle

ASD
VSD
PDA

RV LA

RA LV

Transposition of the Great Vessels (D-Trans)
Transposition of the Great Arteries

X-ray findings

- Mild cardiomegaly
- Concave pulmonary artery segment
- Narrow mediastinum (Egg-on-string)
- Shunt vessels
 - Depends on size of shunt and degree of PS
Transposition of the Great Vessels
Cyanotic with - vasculature
Transposition of the Great Vessels - RVgram
Transposition of the Great Vessels - LVgram
LVgram with VSD but normal Ao and PA relationships

Corrected Transposition With VSD
Inversion of the Ventricles
Without Transposition

Cyanotic
Ebstein’s Anomaly
Ebstein’s Anomaly
General

- Rare
- Posterior and septal cusps of tricuspid valve displaced into right ventricle
 - Right ventricle smaller or “atrialized”
- Tricuspid insufficiency \rightarrow ↑ right atrial pressure \rightarrow a R \rightarrow L shunt through foramen ovale (or ASD)
 - Cyanosis is present in neonate
Ebstein’s Anomaly
Ebstein’s Anomaly
Ebstein’s Anomaly
X-ray Findings

- Cardiomegaly
 - One of few conditions → cardiomegaly first few days of life
- Unusual prominence to right heart border
- Pulmonary flow is decreased
Ebstein’s Anomaly
Ebstein’s Anomaly
Ebstein’s Anomaly
Triad

- Marked Cardiomegaly
- Decreased flow
- Cyanosis
Single Ventricle
Single Ventricle

• Surprise!
 • There are usually two ventricles in this disease
• Single ventricle: one ventricle with two atria
• Three types of Single Ventricle
 • Morphologic LV with a rudimentary RV (common)
 • Morphologic RV with a rudimentary LV (rare)
 • Morphologically indeterminate ventricle (rare)
Single Ventricle

• Most common
 • Morphologic LV with rudimentary RV
• Also called
 • Double-inlet left ventricle
 • Common ventricle
 • Univentricular heart
• Frequently difficult to determine which anatomic ventricle is present
Single Ventricle

Associated Findings

- Pulmonic stenosis
 - Valvular or subvalvular (66%)
- Pulmonary atresia
- PAPVR
- PDA
Single Ventricle Imaging Findings

- No characteristic appearance
- Concave pulmonary artery segment
- Shunt vessels
Single ventricle
The End